

Fluorescent Protease Activity Assay Technologies: EnSens® vs. FRET/TRF/FLT/AMC

EnSens®	FRET/TRF/FLT/AMC
EnSens is selective for a specific protease; can incorporate full recognition site sequence	Substrates are short; not very selective or physiologically relevant
EnSens is recombinant & modular, enabling rapid development of novel, selective substrates	Design limits variety of substrates, requires experimentation to develop new substrates
EnSens Far Red Fluorogen (FRF dye) is resistant to photobleaching up to 48 hours	The fluorophores can be photobleached more easily than EnSens fluorophore
Long emission wavelength (665nm) reduces interference from other assay components	Many use fluorophores with shorter emission wavelengths more subject to interference
Established live-cell protocols for flow cytometry, standard and 3D cell culture microscopy	Not easily applicable to cellular or in vivo applications
Lower enzyme and substrate concentrations mean more competitive inhibitor hits	Requires higher enzyme and substrate concentrations than EnSens
Substrate and fluorophore are separate, so the fluor- ophore is constantly renewed in solution	Substrate and fluorophore are one entity—once quenched, it's done
Quickly and directly convert RFU readouts to reaction velocity, k_{cat} , K_m , IC ₅₀ , etc.	Can involve complicated algorithms and data manipulation
Standard plate or cuvette fluorimeter is sufficient	Can involve complicated/expensive equipment
High signal-to-noise ratios: 6-30X	Higher background than EnSens
No energy transfer involved, minimum self- quenching	Free fluorophore can mask energy transfer (self-quenching)
Substrate and dye are highly soluble	Low aqueous solubility
Substrate is an scFv-based protein, which confers high stability in vitro and in vivo	Limited stability in vitro and in vivo
Stable in wide range of pH, salt, & solvent conditions	Can be pH sensitive